Оценка гемодинамических параметров, как показателей выживаемости в раннем послеоперационном периоде

A.A.AHTOHOB

Физиологические предпосылки.

Адекватная гемодинамика — это абсолютно необходимое условие нормальной работы внутренних органов в раннем послеоперационном периоде и успешного выздоровления после любой хирургической операции. По показателям, характеризующим работу сердца, циркуляцию крови и транспорт кислорода раньше всего можно судить о состоянии пациента и об эффективности лечебных мероприятий.

Существуют большие методологические трудности в определении адекватной доставки и потребления кислорода тканями организма [1].

Одним из наиболее значимых параметров, определяющих кровоток, считается минутный объем крови (МОК) [2]. Но в практике у врачей существует двойственное мнение на этот счет. С одной стороны, у амбулаторных пациентов и большинства стационарных больных определению МОК не придается какого-либо значения. С другой стороны, у пациентов высокого анестезиологического риска и находящихся в критическом состоянии, этот показатель имеет большую значимость.

Важнейшей функцией сердечно-сосудистой системы является транспорт кислорода. Полноценная сердечно-сосудистая система способна обеспечивать адекватный транспорт кислорода ко всем органам при любом состоянии метаболизма. Адекватный МОК соответствует адекватной доставке кислорода, а оптимальное снабжение всех тканей и органов кислородом эквивалентно здоровью сердечно-сосудистой системы.

Показатель доставки кислорода (DO_2) прямо пропорционален МОК, но никак не связан с давлением крови в сосудах:

$$DO_2 = MOK*(1,34*Hb/10*SpO_2/100 + PaO_2*0,0031)*10 (мл/мин.)$$
 (1)

где: DO_2 – доставка кислорода, MOK – минутный объем крови, 1,34 – минимальное значение константы Гюфнера, Hb – гемоглобин артериальной крови, SpO_2 – сатурация артериальной крови, измеренная пульсоксиметром, PaO_2 – парциальное давление кислорода в плазме артериальной крови, 0,0031 – растворимость кислорода в плазме крови.

МОК является интегральным показателем, то есть он вычисляется по определенной формуле, в которую входят несколько других измеряемых параметров:

$$MOK = YO * 4CC/1000 (л/мин.)$$
 (2)

где: УО - ударный объем сердца - количество крови в мл, выбрасываемой левым желудочком в аорту за одну систолу, ЧСС – число сердечных сокращений за одну минуту.

У пациентов без кровотечения и с нормально функционирующими легкими Hb, SpO_2 и PaO_2 не претерпевают быстрых изменений и могут считаться постоянными в течение длительного периода времени. МОК в этой ситуации оказывается единственным динамично изменяющимся показателем, определяющим DO_2 . В этих условиях нормальный MOK обеспечивает нормальный показатель DO_2 . МОК может изменяться, как видно из формулы (2), только с изменением УО и/или ЧСС.

В отечественной медицинской литературе принято считать, что у пропорционально развитого здорового взрослого при росте 170 см и весе 70 кг в спокойном состоянии в положении на спине МОК = 5,0 л/мин. Но этот уровень МОК определен для условий

основного обмена (основной обмен - это минимальные для организма затраты энергии, определенные в строго контролируемых стандартных условиях). Milnor [4] обнаружил, что у всех нормально развитых здоровых среднего веса взрослых млекопитающих в спокойном состоянии в положении на спине МОК находится в прямой пропорции к их массе тела и округленно составляет 100 мл в минуту на 1 кг (0,1 л/мин./кг), смотрите рис.1.

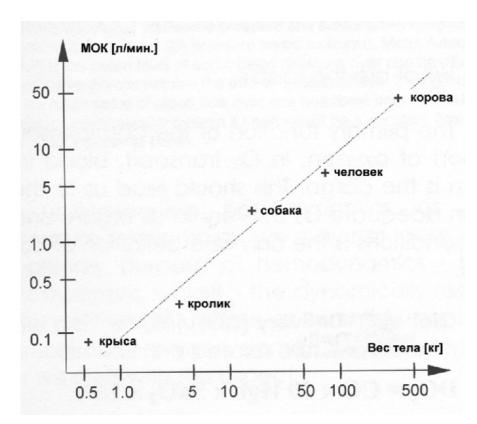


Рис.1. Зависимость МОК от веса тела у различных млекопитающих [4].

Отсюда следует, что принимать МОК=5,0 л/мин. для взрослого здорового человека является заблуждением. Такая величина МОК может быть принята за норму только у низкорослого здорового взрослого нормостеника весом 50 кг. Вывод из этого один: МОК может объективно отражать состояние гемодинамики, если его проиндексировать какимнибудь показателем, связанным с массой человеческого тела. Индексирование МОК площадью поверхности тела (ППТ), хотя и не совсем корректно [4], но стало всемирно признанным клиническим стандартом, поскольку в расчетах учитываются вариации массы тела конкретного субъекта по сравнению с идеальным человеком. Поделив МОК на ППТ, получим индексированный объективный показатель гемодинамики – сердечный индекс (СИ):

$$\mathbf{C}\mathbf{H} = \mathbf{MOK}/\mathbf{\Pi}\mathbf{\Pi}\mathbf{T} \ (\pi/\mathbf{M}^2/\mathbf{M}\mathbf{U}\mathbf{H}.)$$
 (3)

где: СИ - сердечный индекс, МОК - минутный объем кровообращения, ППТ - площадь поверхности тела.

$$\Pi\Pi T = \mathbf{B}^{0,425} * \mathbf{P}^{0,725} * 71,84 * 10^{-4}$$
 (м²) [формула Дюбуа] (4)

где: В - вес в кг, Р - рост в см [2].

Учитывая все вышесказанное, у здорового взрослого при росте 170 см и весе 70 кг в спокойном состоянии в положении на спине следует принять **МОК=7,0** л/мин. Тогда по формуле (4) $\Pi\Pi T=1,8$ м², а по формуле (3) $C\Psi=7,0/1,8=3,9$ л/мин./м².

Следуя вышеописанной логике, необходимо проиндексировать и DO_2 . Заменив в формуле (1) абсолютный показатель гемодинамики (МОК) на относительный (СИ), получим индексированный показатель доставки кислорода – индекс доставки кислорода (DO_2I):

$$DO_2I = CH*(1,34*Hb/10*SpO_2/100 + PaO_2*0,0031)*10 (мл/мин./м²)$$
 (5)

Подставляя средние значения нормы показателей, входящих формулу (5), получим среднее значение DO_2I :

$$DO_2I = 3.9*(1.34*140/10*96/100 + 98*0.0031)*10 = 714 (MJ/MHH/M2)$$
 (5a)

Однако процесс транспорта кислорода не заканчивается доставкой кислорода к органам и тканям. Здесь на клеточном уровне он экстрагируется, участвуя в метаболических процессах. В результате венозная кровь, возвращающаяся к правому сердцу, обеднена кислородом, и, учитывая артериовенозную разницу сатурации, вычисляется индекс потребления кислорода (VO_2I):

$$VO_2I = CH * Hb * 1,34 * (SaO_2 - SvO_2) / 100$$
 (мл/мин./м²) (6)

где: VO_2I – индекс потребления кислорода, CU - сердечный индекс, Hb – гемоглобин артериальной крови, SaO_2 – сатурация артериальной крови, SvO_2 – сатурация смешанной венозной крови.

Поскольку венозная кровь возвращается к правому сердцу двумя независимыми путями (верхняя и нижняя полая вена), то VO_2I вычисляется по сатурации кислорода в смешанной венозной крови (SvO_2), то есть после того, как произойдет смешивание венозной крови из обоих потоков. Образцы смешанной венозной крови могут забираться дискретно из легочной артерии или правого предсердия через соответствующий канал катетера Сван-Ганца, или измеряться непрерывно с помощью специального датчика сатурации крови, размещенного на конце этого же катетера.

 VO_2I чаще всего представляет собой итоговую характеристику результата доставки кислорода. Но насколько важна информация о VO_2I в клинической практике?

Рассмотрим некоторые особенности VO₂I:

- Информацию о VO₂I можно получить только инвазивно.
- Вычислив этот показатель, его надо сравнить с соответствующей нормой (100 200 мл/мин/м²) и, таким образом, сделать заключение об адекватности или неадекватности состояния транспорта кислорода.
- Поскольку VO₂I является общим показателем, он не может показывать адекватность и неадекватность потребления кислорода отдельными органами.

Самоуправляемое на тканевом уровне увеличение экстракции кислорода - это последняя линия обороны в борьбе пациента за выживание. Экстракция кислорода увеличивается, когда гемодинамика и перфузия не обеспечивают адекватный DO_2I . Причиной этого могут быть гиповолемия и/или гипоинотропия и/или гипервазотония и/или гипохронотропия. На сегодняшний день не известно терапевтических мероприятий, которые позволили бы клиницисту повлиять на экстракцию кислорода.

Особенности DO₂I:

- Мониторирование DO_2I может осуществляться неинвазивно, если известен Hb и PaO_2 .
- Отсюда вытекает, что терапия, ориентированная на нормализацию DO_2I (по сравнению с VO_2I) легче достижима, хорошо контролируется и более клинически значима.
- Увеличение доставки кислорода (DO₂I) до нормального уровня в подавляющем большинстве случаев ликвидирует дефицит кислорода в органах. Исключение могут составить ткани и отдельные органы, потерявшие нормальную физиологическую способность усваивать кислород из крови.

Существует несколько направлений терапии с целью увеличения DO₂I:

- Воздействие на гемодинамические регуляторы:
 - а) при диагностированной гиповолемии увеличение объема крови;
 - б) при диагностированной гипоинотропии положительные инотропные средства;
 - в) при диагностированной гипервазотонии сосудорасширяющие средства.
- Воздействие на регулятор перфузии: при диагностированной гипохронотропии – положительные хронотропные средства.
- Нормализация содержания гемоглобина в крови: при диагностированной гемодилюции – переливание крови.
- Улучшение легочного газообмена при сниженном РаО₂.

Из формулы (5) видно, что CU - единственный динамично изменяющийся показатель, определяющий DO_2I . CU, как известно, прямо пропорционален ударному индексу (УИ) и числу сердечных сокращений (ЧСС):

$$\mathbf{C}\mathbf{H} = (\mathbf{Y}\mathbf{H} * \mathbf{H}\mathbf{C}\mathbf{C})/1000 \ (\pi/\mathbf{M}\mathbf{H}\mathbf{H}./\mathbf{M}^2)$$
 (7)

VИ – это индексированный пульсовой показатель кровотока (в отличие от CИ – минутного показателя). Тогда, учитывая предыдущие расчеты, при принятом среднем ЧCC = 72 уд/мин., у здорового взрослого в спокойном состоянии VI = 3.9/72*1000=54 (мл/м²/уд.).

У здоровых молодых взрослых во время интенсивной физической нагрузки СИ может возрастать в 5 раз, то есть доходить до 18 л/мин./м². Троекратное увеличение СИ обеспечивается хронотропно за счет нарастания ЧСС (в среднем от 60 до 180 уд./мин.), а остальное увеличение СИ происходит за счет нарастания УИ (рис.2) [6], то есть максимальный УИ может быть 100 мл/м²/уд., после чего увеличение УИ останавливается и человеческое сердце превращается в насос с постоянным ударным объемом (УО):

$$\mathbf{YO} = \mathbf{YH} * \mathbf{\Pi} \mathbf{\Pi} \mathbf{T} \pmod{\mathbf{y}\mathbf{Z}}$$

Причем УИ может увеличиваться только когда ЧСС не выше 120 уд./мин. [6]. Увеличение УИ происходит за счет совместного приращения внутрисосудистого объема крови (волемии) и сократительной функции миокарда (инотропии), а также снижения периферического сосудистого сопротивления [7]. Сердце, таким образом, представляет собой пульсовой насос, способный изменять как частоту сокращений (ЧСС) так и объем пульсового выброса (УО).

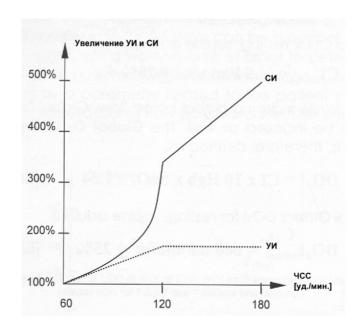


Рис.2. Увеличение УИ и СИ как функция ЧСС в ответ на возрастание потребности в кислороде [6].

Критерии выживаемости.

В 1985 г. группа калифорнийских ученых изучала ретроспективно связь между выживаемостью пациентов после больших хирургических операций и различными показателями гемодинамики, полученными во время послеоперационного периода с помощью обширного инвазивного мониторинга с помощью катетеров [5]. Графики этого исследования, представленные на рис.3, показывают, что только два параметра [индекс доставки кислорода (DO₂I) и ударный индекс работы левого желудочка (УИРЛЖ)] строго коррелируют с выживаемостью. Также выживаемость пациентов прямо пропорционально увеличивается с нарастанием индекса потребления кислорода (VO₂I), но ни как не коррелирует с ЧСС. Это исследование позволило обнаружить временной интервал выживаемости - первые 36 часов после операции. Если в течение него поддерживать DO₂I УИРЛЖ выше, обнаруженного исследовании, В порога выживаемости, обеспечивается 100% выживаемость.

Основной вывод Shoemaker с соавторами [5]: чтобы обеспечить 100% выживаемость после тяжелых хирургических операций необходимо поддерживать в первые 36 часов после операции два интегральных гемодинамических параметра на уровнях выше порога выживаемости:

$$DO_2I \ge 700 \text{ мл/мин/м}^2$$
 (9)
УИРЛЖ $\ge 70 \text{ гм/м}^2$ (10)

Ударный индекс работы левого желудочка (УИРЛЖ) определяется как:

УИРЛЖ =
$$0.0144 * (АД сред. - ДЗЛА) * УИ (гм/м2)$$
 (11)

где: АД сред. – среднее артериальное давление, ДЗЛА – давление заклинивания легочной артерии, которое для неинвазивных методов исследования принимают постоянно равным 6 мм рт.ст., УИ – ударный индекс. Если вычислить УИРЛЖ, подставляя нормальные средние значения параметров, входящих в формулу (11), то получим средний показатель:

УИРЛЖ=0,0144*(92 - 6) * 54 = 67
$$(\Gamma M/M^2)$$
 (11a)

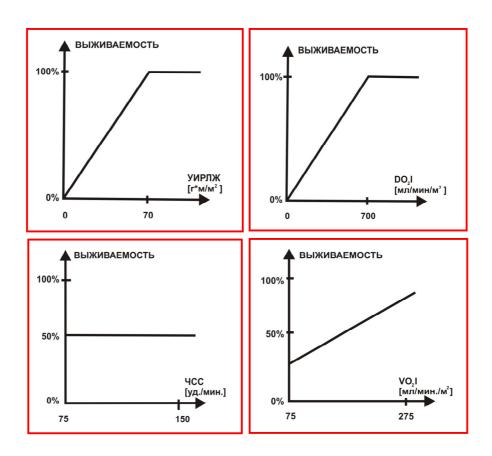


Рис.3. Выживаемость пациентов после тяжелой хирургической операции как функция индекса доставки кислорода (DO_2I), ударного индекса работы левого желудочка (УИРЛЖ), частоты сердечных сокращений (ЧСС) и индекса потребления кислорода (VO_2I) [5].

Таким образом, взяв за исходные данные показатели МОК (0,1 л/мин./кг) и ЧСС (72 уд./мин.), мы вычислили средние гемодинамические показатели у здорового взрослого при росте 170 см и весе 70 кг в спокойном состоянии в положении на спине, два из которых оказались очень близки параметрам выживаемости, обнаруженным Shoemaker с соавторами [5] (таблица N 1).

Таблица № 1

Показатель	Средняя величина	Порог выживаемости
	(Антонов)	(Shoemaker, et al.)
$\mathbf{DO_2I}$ (мл/мин/м ²)	714	700
УИРЛЖ (гм/м ²)	67	70

Обозначенные величины (9) и (10) порога выживаемости на первый взгляд кажутся высоко поднятым средним уровнем принятой во всем мире нормы. Но если посмотреть на это в сравнении с нормальными средними показателями гемодинамики, вычисленными нами, взяв за отправную точку МОК (0,1 л/мин./кг), то оказывается, что порог выживаемости, определяемый этими двумя показателями, совпадает со средней

величиной нормы. При таких величинах DO_2I и УИРЛЖ все органы получают адекватное кровоснабжение.

Если у хирургического пациента с не компрометированной гемодинамикой в раннем послеоперационном периоде сохраняется нормальный уровень всех гемодинамических регуляторов (нормоволемия, нормоинотропия, нормовазотония, нормохронотропия), то все органы получают адекватное кровоснабжение, как перед операцией. И этого нормального уровня оказывается достаточно для дополнительной доставки кислорода к хирургической ране, обеспечивая ее полноценное заживление. Такой пациент не умирает.

И напротив, если у пациента наблюдается расстройство гемодинамики в раннем послеоперационном периоде (гиповолемия и/или гипоинотропия и/или гипервазотония и/или гипохронотропия), то повышенная потребность в перфузии хирургической раны не удовлетворяется. Одновременно происходит снижение кровоснабжения других органов. Если это состояние продолжается более 36 часов, в зависимости от уровня дефицита перфузии, внутренние органы, получающие недостаточное кровоснабжение, перестают выполнять свои функции (фаза полиорганной дисфункции) и пациент погибает приблизительно в первые 92 часа (не доживая 4 суток) после операции от моно или полиорганной недостаточности [5].

Для облегчения практической оценки мониторируемых показателей гемодинамики, обеспечивающих упомянутый в данной работе порог выживаемости (или предлагаемые нами средние нормы гемодинамических показателей), приводим средние величины исходных показателей, входящих в формулы расчетов DO_2I и УИРЛЖ (таблица № 2).

Вы можете воспользоваться компьютерным калькулятором "Вычисление показателей выживаемости в раннем послеоперационном периоде" на сайте www.symona.ru.

Таблица № 2

Средние значения гемодинамических показателей нормы,

обеспечивающих порог выживаемости в раннем послеоперационном периоде

(для взрослых нормостеников ростом 170 см и весом 70 кг)

Показатель	Среднее значение	Границы нормы
Нb (г/л)	140	126 – 154
SpO ₂ (%)	96	95 – 98
РаО ₂ (мл/100мл)	98	97 – 100
УО (мл/уд.)	97	78 – 116 (±20%)
УИ (мл/м²/уд.)	54	43 – 65 (±20%)
СИ (л/мин./м ²)	3,9	3,1 – 4,7 (±20%)
МОК (л/мин.)	7,0	5,6 – 8,4 (±20%)
АД сред. (мм рт.ст.)	92	$74 - 110 \ (\pm \ 20\%)$
ДЗЛА (мм рт.ст.)	6	Принято постоянным для неинвазивного мониторинга
ЧСС (уд./мин.)	72	60 - 90
DO₂I (мл/мин./м ²)	700	$560 - 840 \ (\pm \ 20\%)$
УИРЛЖ (гм/м ²)	70	56 – 84 (± 20%)

 $[\]pm$ 20%- разброс величины границ нормы, принятый исходя из учета погрешностей мониторов при измерении физиологических параметров.

Выводы.

1. Исследования физиологов заставляют нас пересмотреть нормы основных гемодинамических показателей взрослых (МОК, СИ, УИ, УИРЛЖ, DO_2I) в сторону увеличения, что позволит объективно оценивать состояние кровообращения тяжелых пациентов и проводить предупреждающую терапию полиорганной недостаточности.

2. В первые 36 часов после тяжелой хирургической операции необходимо проводить мониторинг сердечно-сосудистой деятельности и обязательно поддерживать два интегральных гемодинамических показателя (DO_2I и УИРЛЖ) не ниже среднего уровня. Это поможет обеспечить полноценную работу всех внутренних органов и 100% выживаемость.

Литература.

- 1. Интенсивная терапия: Руководство для врачей. Малышев В.Д., Веденина И.В., Омаров Х.Т. и др. (под ред. Малышева В.Д.).М."Медицина". 2002. С. 39.
- 2. Braunwald E. Assessment of cardiac function. Heart Disease. A Textbook of cardiovascular Medicine. Braunwald E (Ed), Philadelphia, 467, 1984.
- 3. Jacobsen B., Webster J.G. Medicine and Clinical Engineering. Prentice-Hall Inc., 388, 1977.
- 4. Milnor W.R. Hemodynamics. Williams & Wilkins, 136, 155, 1982.
- 5. Shoemaker W.C., Bland R.D., Appel P.L. Therapy of Critically Ill Postoperative Patients Based on Out-come Prediction and Prospective Clinical Trials. The Surgical Clinics of North America, Critical Care, August, 811, 1985.
- 6. Shi J.R. Cardiac structure and function in young athletes. Diss. Master of Science. Victoria University of Technology, USA, 2002.
- 7. Sramek B.B. Hemodynamics and its role in oxygen transport. Biomechanics of the Cardiovascular System. Czech Technical University Press, 209-231, 1995.